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M.1  Introduction

Software complexity is one branch of software metrics that is focused on direct measurement of software
attributes, as opposed to indirect software measures such as project milestone status and reported system
failures.  Current military metrics programs emphasize non-complexity metrics that track project management
information about schedules, costs, and defects.  While such project tracking measures are necessary to any
substantial software engineering effort, they lack predictive power and are thus inadequate for risk
management.  Complexity measures can be used to predict critical information about reliability and
maintainability of software systems from automatic analysis of the source code.  Complexity measures also
provide continuous feedback during a software project to help control the development process.  During
testing and maintenance, they provide detailed information about software modules to help pinpoint areas
of potential instability.  Figure M-1 shows the control flow graph of a simple, low-risk software module.
Figure M-2 shows a complex, moderate-risk software module.  Figure M-2 shows an extremely complex,
high-risk module.  Complexity metrics quantify that difference for use in software management.  Measurement
of software complexity provides substantial value to a software metrics program.
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Figure M-1.   Simple, Low-Risk Software Module
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Figure M-2.  Complex, Moderate-Risk Software Module
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Figure M-3.  Extremely High-Risk, Complex Software Module

M.2  Open Re-engineering

There are hundreds of software complexity measures, ranging from the simple, such as source lines-of-
code, to the esoteric, such as number of variable definition/usage associations.  It is important to select a
good subset of these measures for implementation.  An important criterion for metrics selection is uniformity
of application.  The key idea here is “open re-engineering.”  The reason “open systems” are so popular for
commercial software applications is that the user is guaranteed a certain level of interoperability — the
applications work together in a common framework, and applications can be ported across hardware platforms
with minimal impact.  The open re-engineering concept is similar, in that the abstract models used to
represent our software systems should be as independent as possible of implementation characteristics such
as source code formatting and programming language.  Complexity measurement is a fundamental
application, but open re-engineering extends to other modeling techniques such as flow graphs, structure
charts, and structure-based testing.
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We want to be able to set complexity standards and interpret the resultant numbers uniformly across projects
and languages.  A particular complexity value should mean the same thing whether it was calculated from
Ada source code or from Jovial.  Otherwise, to get predictive benefits from the complexity measures we
would have to calibrate the results based on “similar” projects with known outcomes, and the process
becomes too subjective for effective management.  The most basic complexity measure, the number of
lines-of-code, does not meet the open re-engineering criterion, since it is extremely sensitive to programming
language, coding style, and textual formatting of the source code.  The “cyclomatic complexity” measure,
which measures the amount of decision logic in a source code function, meets the open re-engineering
criterion.  It is completely independent of text formatting and is nearly independent of programming language
since the same fundamental decision structures tend to be available and uniformly used in all common
programming languages.  The software functions represented in Figures M-1, M-2, and M-3 have cyclomatic
complexity measures of 7, 16, and 22 respectively.

Certainly, there are valuable complexity measures that are not “open.”  For example, the amount of access
to global data elements is very useful in managing C projects, even though that measure is useless for
COBOL in which all data is global.  However, as a foundation for a complexity measurement program, it is
best to concentrate on measures that can be applied consistently across projects and languages.  That way,
the same interpretations and methodology can be used without having to perform applicability assessments
for each project.

M.2.1  Common Complexity Measures

We’ve already discussed lines-of-code, which is about the weakest complexity measure in common use.  A
refinement is to count the lines of executable code, data declarations, comments, and so on individually,
then look at derived measures such as the percentage of comment lines.  These all suffer from the weakness
that most of what is being measured is source text format, which is not an intrinsic attribute of the software
implementation.  Most languages have “pretty printers” available that reformat code to a desired set of
standards, and the “indent” program for C has about 50 switches that configure behavior.  This leads us to
a related set of measures, that of coding standards conformance.  If code is supposed to have a comment at
the beginning of every procedure, the percentage of procedures that actually have the comment can be
measured.  While these source format measures give useful information for project management, they are
not uniformly applicable.  Their extreme sensitivity to cosmetic attributes of the source code makes them
unsuitable as core complexity measures.

The Halstead Software Science metrics are a significant step up in value.  [HALSTEAD77]  By counting
the number of total and unique operators and operands in the program, measures are derived for program
size, programming effort, and estimated number of defects.  Halstead metrics are independent of source
code format, so they measure intrinsic attributes of the software.  Since different languages have different
sets of operators, it isn’t immediately obvious that these measures can be applied across languages, but
there’s a “language level” measure that can help with conversion.  Halstead metrics are a bit controversial,
especially in terms of the psychological theory behind them, but they have been used productively on many
projects.  The main drawback is that the mathematical formulas of the major Halstead metrics are significantly
removed from the code, so there isn’t a strong prescriptive component.  You can identify code as potentially
unreliable, but the Halstead theory doesn’t say much about how to test it or how to improve it.  Also, and
this gets back to uniformity of application, there aren’t any established threshold values for what constitutes
dangerous software; you’re pretty much on your own when deciding what values constitute unacceptable
risk.  Despite these drawbacks, Halstead metrics are very useful for identifying computationally-intensive
code with many dense formulas, which represent potential sources of error that other complexity measures
are likely to miss.
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The McCabe cyclomatic complexity measure is so versatile and widely used that it is often referred to
simply as “complexity,” and we recommend it as the foundation of any software complexity program.
[McCABE76]  Since it is based purely on the decision structure of the code, it is uniformly applicable
across projects and languages and is completely insensitive to cosmetic changes in code.  Many studies
have established its correlation with errors, so it can be used to predict reliability.  More significantly,
studies have shown that the risk of errors jumps for functions with a cyclomatic complexity over 10, so
there’s a validated threshold for reliability screening.  Also, this assessment can be performed incrementally
during development and can even be estimated from a detailed design.  For an individual software module,
the programmer can easily calculate cyclomatic complexity manually by counting the decision constructs
in the code.  This allows continuous control during a project, so that unreliable code is prevented at the unit
development stage.  Compliance can be verified at any stage of the project using automated tools.  A final
benefit of cyclomatic complexity, which we will discuss in more detail later on, is that it gives a precise
verifiable testing prescription — the more complex and therefore error-prone a piece of software is, the
more testing it requires.

There are several specialized McCabe metrics that are derived by calculating cyclomatic complexity after
all control structures satisfying certain properties have been ignored.  These metrics can thus be viewed as
refinements of cyclomatic complexity for specific applications.  The most widely used of these specialized
metrics is “essential complexity,” which measures the amount of unstructured decision logic in software.
Unstructured code, typically caused by using “goto” statements or breaking out of loops, is harder to
understand and maintain than well-structured code.  This is because control structures that interact in
unstructured ways cannot be decomposed, understood, and modified in isolation.  Essential complexity is a
widely used measure of maintenance risk, and a threshold value of four is typical for quality screening.
Also, while cyclomatic complexity increases gradually when code is added during maintenance, essential
complexity can increase dramatically by the addition of a single software patch.  The patched code then
becomes a source of risk for future maintenance.  Using essential complexity to screen modules after each
modification during maintenance can manage this risk.

As such, essential complexity is a good supplement to cyclomatic complexity as a cornerstone of a complexity
measurement program.  Although Figures M-1 and M-2 both have high cyclomatic complexity, Figure M-
3 has high essential complexity and thus carries a significantly higher maintenance risk.  Two other McCabe
complexity variants, design complexity, which measures the amount of interaction between decision logic
and subroutine calls, and data complexity, which measures the amount of interaction between decision
logic and data references, are related to integration testing and design coupling.  [McCABE89]  These
metrics are suitable for inclusion in a mature software complexity measurement program.

M.2.2  Complexity and Testing

The Structured Testing methodology is based on cyclomatic complexity, in the sense that the cyclomatic
complexity is the number of tests required.  [McCABE82]  Given the correlation of complexity with errors,
this is a desirable result since we want testing effort to be proportional to complexity.  Many other coverage-
based testing techniques, from the simple ones such as statement coverage to the complicated ones such as
testing all data definition-usage associations, do not have this property.  You could have arbitrarily complex
software with lots of statements and data associations and still satisfy those other testing criteria with one
or two tests, or you might require lots of tests.  With cyclomatic complexity and Structured Testing, you
know in advance exactly how many tests you’ll need, so you can do detailed test planning and manage the
schedules, costs, and risks associated with unit testing.  Design complexity provides similar benefits for
integration testing.
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However, the connection between complexity and testing goes much deeper than the number of tests.  From
mathematical analysis, we know that the cyclomatic complexity gives the exact number of tests necessary
to test each decision outcome in a function independently.  The Structured Testing methodology says that
we should run such a set of tests.  Thus, we’re not just testing statements or decisions individually; we’re
verifying the interactions between different parts of decision logic.  In the underlying mathematical model,
we can construct any path from a combination of the tests we are required to run during testing, so we’re
likely to detect any sources of potential error.  There are techniques to calculate a set of test paths manually
from the source code, and automated tools can verify that a satisfactory set of paths has actually been run
during testing.  The number of independent decision outcomes exercised then becomes a dynamic metric,
and testing progress can be measured and managed as this number approaches the cyclomatic complexity.

M.2.3  Complexity and Re-engineering

One of the most difficult tasks in software is maintaining a system without knowing the physical design of
the code and how it relates to the original abstract design.  For a large system, design documentation only
takes you so far, then you have to work with the code.  Not only does this entail risk in terms of introducing
errors due to misunderstanding code, but in the absence of complexity analysis this is unmanageable risk.
The scheduling and costing problems are almost as bad, since on the surface the code and documentation
give very little indication of how big a particular maintenance task really is.  Complexity analysis is a
critical component of successful scheduling and risk management in a re-engineering environment.

Studies confirm that cyclomatic complexity is significantly correlated with debugging time, to a much
greater extent than lines-of-code.  [SHEPPARD81]  Cyclomatic complexity has also been used successfully
as the core metric of formal re-engineering cost models, and this is an area where a lot more work remains
to be done.  [DeFEE94]  Although cyclomatic complexity is a good foundation and has been used in
numerous case studies, for something like formal estimation we should work towards including a
representative mix of complexity measures such as essential complexity and the Halstead metrics.  Even
the number of lines-of-code has a solid place in software management — complexity metrics don’t replace
your current system of software controls; they just add a new dimension of predictability, reliability, and
risk management to your software process.

M.2.4  Complexity and Reuse

There’s a lot of redundant code in software systems.  This code duplicates the functionality and in many
cases the actual implementation of other code in the system.  The redundant functions tend to be maintained
individually, so they diverge, and there’s an enormous proliferation of errors.  Redundant code is a particular
risk on systems that are funded by the line-of-code, as we’ve seen when doing Independent Verification and
Validation.  It’s definitely to our advantage to locate and eliminate redundant code, so that we can increase
the amount of reuse and reduce the total complexity of our software.  Complexity analysis can provide a lot
of support.  One important observation is that independent implementations of the same functionality tend
to have similar control flow structure.  Therefore, we can use complexity measures as a screen to identify
sets of software that are potentially redundant.  Using the cyclomatic and essential complexity measures to
identify candidate redundant modules then proceeding to examine the full flow graph diagrams and source
code, a significant amount of redundant code can be removed, with resultant benefits to system size and
stability.  [WILLIAMSON93]
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So, complexity measurement can help us find redundant code during maintenance.  But what about preventing
it during development?  There are many products that locate reusable code in databases, usually based on
matching text in a functional description with requirements characteristics.  These techniques are valuable,
but are limited by the amount of effort put into documenting the code in the repository.  A supplementary
approach based on complexity measurement can be used with an arbitrary collection of code with no
documentation or database indexing overhead.  The key lies in estimating the complexity metrics of the
desired component from the design or pseudo-code, and then searching the source code database for code
with similar metrics.  For this application, a wide variety of metrics are useful.

“Open” metrics are still important to find existing code in multiple languages, but if all you’re looking for
is Ada, you can get a lot of benefit out of measuring specific language constructs.  The main requirement
for using complexity measures to find reusable code is that the range of the complexity measure can be
predicted from the design specification for the code.  For example, you might know that a particular routine
should have cyclomatic complexity between five and eight, have 20 to 50 lines-of-code, not contain any
exception handlers, and contain exactly one loop.  Then, just as with a text-oriented database search, you
get the number of software functions that match your criteria, and you can refine or relax the criteria until
you get a reasonably sized list of candidates.  At that point, you can look at the implementations and
possibly save a lot of work with pretty much no extra overhead.  This is just-in-time reuse, and complexity
measurement provides the technology.  The only organizational overhead is running a complexity
measurement tool over the source code, which will be done anyway, and wasteful development of redundant
code is avoided.

M.2.5  Implementing A Complexity Measurement Program

Complexity measurement is such a large and powerful area that it’s tempting to assess hundreds of potential
metrics, run pilot projects to assess potentially useful metrics, mandate data collection, correlate metrics
with project performance, and eventually have a committee produce a complexity measurement policy.
This doesn’t work.  It takes years to start getting value out of that kind of process, and we need to use
complexity analysis to help manage projects right now.

The best way to implement a complexity measurement program is to start small.  Collect data on a wide
variety of metrics, but pick a small, validated, intuitive set of metrics to actually apply.  Continue to use
lines-of-code, and add cyclomatic complexity and essential complexity.  Train the developers to calculate
complexity by hand, and use tools to automate the process.  Start using the complexity threshold of 10
immediately to improve software reliability.  Start evaluating test plans in terms of complexity to make sure
that error-prone code gets the testing attention that it needs.  Then, once the operational benefits of complexity
analysis have been widely experienced, risk management models can be refined with measures such as the
Halstead metrics and data complexity.

M.3  Conclusions

Complexity analysis has an extremely high payoff for the investment.  Moving from counting lines-of-code
to calculating cyclomatic complexity has immediate, measurable benefits in terms of risk management,
reliability prediction, cost containment, project scheduling, and improving overall software quality.  Unlike
the number of lines-of-code, a good measure like cyclomatic complexity can be used to give an objective
assessment of software that is directly comparable across different projects, coding styles, and even
programming languages.  This enables organization-wide standards and procedures that can bring true
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repeatability and predictability to software.  There are many valuable complexity metrics, and more are
being developed every day, so it’s important to start simple, not get overwhelmed, and build a solid complexity
analysis program as a foundation for adding new metrics as their benefits are demonstrated.

Thomas J. McCabe
Voice: (410) 995-1075
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M.5  Editor’s Note

This article, originally published in the December 1994 edition of CrossTalk, was reviewed by subject
matter experts prior to publishing.  One reviewer cautioned that any attempt to apply complexity
measurements requires a thorough understanding of both the method and the software.  When the decision
is made to choose a method to measure software complexity, there is no single method that will meet every
need and the use of hard and fast rules may actually increase complexity.  Questions to the STSC, regarding
software metrics, should be addressed to:

Software Technology Support Center
Ogden ALC/TISE
7278 Fourth Street
Hill AFB, UT  84056-5205
Voice: (801) 775-5555   DSN 775-5555
Fax: (801) 777-8069   DSN 777-8069
E-mail:  consulting@stsc1.hill.af.mil
http:  www.stsc.hill.af.mil
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